
MY472 - Week 11
Cloud Computing + Docker
Thomas Robinson

Outline

This week’s seminar:

Cloud computing

Containerization & Docker

Guided coding

·

·

·

1. Running an EC2 instance

2. Running Docker containers locally

Building a shiny app·

2/32

Cloud computing basics

A definition

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model promotes availability and is composed of five
essential characteristics, three service models, and four deployment models.”
(From NIST Definition of Cloud Computing)

4/32

https://csrc.nist.gov/publications/detail/sp/800-145/final

Possible use cases in data science

Won’t be able to cover even 1/100000th of possible use-cases

Continuous scraping or API requests

Hosting and querying (very large) databases

Training machine learning models, e.g. in NLP, deep and reinforcement
learning

“Embarrassingly parallel” tasks/simulations

Hosting web applications (like Shiny Apps)

…

·

·

·

·

·

·

Highlight the basic mechanics

Leave it to you to explore further avenues

·

·

5/32

Virtualisation

In cloud computing, computers are virtualised

Configuration of virtual machine is called an instance

·

Similar idea to virtual machine on your computer but readily scalable

Data centers use hardware to host a number of virtual machines

-

-

Centers are geolocated

Choice can depend on latency and legal issues

-

-

·

Number of (v)CPUs

Amount of RAM

Amount/type of storage capacity

Base operating system

-

-

-

-

6/32

Advantages of cloud computing

Scalability (on demand)

Costs

Ease

·

Many services let you purchase capacity near instantly

You can choose the hardware configuration that suits the task at hand

Suitable for massive tasks that are simply infeasible on a personal
computer

-

-

-

·

Only pay for what you use-

·

You can get on with your day while your code runs!-

7/32

Disadvantages of cloud computing

Scalability

Costs

Ease

Security and legal compliance

·

More “compute” does not necessarily mean faster execution-

·

Can be expensive e.g. for frequent computations-

·

Requires careful testing before committing to costly servers-

·

Connection via the cloud can open vulnerabilities

GDPR requirement of encryption, data security, data physical location

-

-

8/32

Amazon AWS Elastic Cloud Compute (EC2)

One of most popular cloud computing services:

We will use t2.micro instances this week (free for first 12 months)

AWS offers general-purpose and compute/memory-optimized instances

Reasonably cheap (including free options)

Good control of configuration

Complementary products (like storage)

·

·

·

“micro” because it has 1 vCPU and only 1GB RAM

After 12 months, this server costs $0.0116 per hour to run (US-East-1)

·

·

Including GPUs (at a cost)·

9/32

Amazon AWS EC2 online resources

AWS Free Tier

Instance types

On demand pricing by instance type

10/32

https://aws.amazon.com/free/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/on-demand/

(Amazon Machine) Images

We want to initialise our instance with some basic configuration

Amazon “images” provide templates for configuring the system

A good starting point is the default Amazon Linux image:

An operating system

Any specific applications

·

·

Can be stored and loaded quickly

Can be application-specific, e.g. launching an RStudio server

·

·

Open-source so no additional costs to run

Loads of support online

·

·

11/32

Step 1: Launching the instance

Note:

In the EC2 dashboard click “Launch instance”

Choose Amazon Linux 2 AMI

Choose t2.micro instance

Create key pair for SSH access (or choose existing one)

·

·

·

·

Default user name for Amazon Linux 2 AMI is “ec2-user”

(See documentation for other AMIs)

·

·

12/32

Step 2: Connecting to the instance, setting swap
memory

Connect to EC2 instance via command line (more info)

NOTE: for small instances with only 1GB of ram, create swap memory
(reference) to install some larger R packages without maxing out memory

·

Mac/linux: chmod 400 yourkeyname.pem and ssh -i
"path/to/key/yourkeyname.pem" ec2-user@public-instance-dns

Windows: Use PuTTY - tutorial as pdf on course page

Linux console via the browser (simpler): Click on instance -> Connect ->
EC2 Instance Connect -> Connect

-

-

-

·

sudo /bin/dd if=/dev/zero of=/var/swap.1 bs=1M count=2048
sudo /sbin/mkswap /var/swap.1
sudo /sbin/swapon /var/swap.1
sudo sh -c 'echo "/var/swap.1 swap swap defaults 0 0 " >> /etc/fstab'

13/32

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstancesLinux.html
https://jagg19.github.io/2019/08/aws-r/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html

Step 3: Installing Linux libraries and R

Before installing R packages, we need to install additional Linux libraries

Then install R

Afterwards you can open R session by typing R at the command line

More usually on the cloud, you run entire R scripts non-interactively

·

sudo yum install libcurl-devel openssl-devel libxml2-devel-

·

sudo amazon-linux-extras install R4-

·

·

We’ll demonstrate this in a few slides times!-

14/32

Step 4: Copying files to and from the EC2 instance

We can copy files from and to the EC2 via the command line (scp command)

Or use a file transfer programme (guide here)

Cyberduck is a good option

·

·

·

Choose “Open connection”

SFTP (secure file transfer protocol)

Enter the public DNS for server,

User name is “ec2-user” and use your .pem as SSH private key

-

-

-

-

15/32

https://docs.aws.amazon.com/transfer/latest/userguide/getting-started-use-the-service.html
file:///Users/tsr/Dept%20of%20Methodology%20Dropbox/Dept%20of%20Methodology%20Team%20Folder/Teaching%20and%20Assessment/Courses/MY472/MY472_2023-24/my472_lectures/cyberduck.io

Step 5: Running R, R scripts and installing
packages

Useful commands:

When you have many packages to install:

ls shows all folders and files in the current directory

cd path/to/some/folder goes to folder

Rscript myscript.R runs R script in current folder

Rscript myscript.R & runs R script in the background while the shell is
open

·

·

·

·

Write an install R script

Upload to server

Run using Rscript

·

·

·

16/32

Persisting sessions

Common issue:

Why? Your session terminates when the SSH connection closes

Set an R script running

Lose connection (close terminal/laptop/internet connection)

Log back in and find the script has terminated

·

·

·

Use screen -S screen_name to start a persistent session

Run your code in this screen

·

·

Exit the screen with Ctrl + a + d

Reconnect with screen -r screen_name

“Kill” the screen with Ctrl + a + k (then type ‘y’ to confirm)

-

-

-

17/32

Containerization and Docker

19/32

A (definitely not personal) anecdote

You’re an academic who has just had a paper accepted at a journal!

What do you do!?

The journal requires that all your results replicate exactly

You last ran the code to generate the figures 2-3 years ago

The same code no longer generates the same results

·

·

·

“Dear Head of Department, I am not worthy of this profession…”

Acquire a time machine

·

·

No wait, maybe…-

20/32

Failures to replicate

Code often fails to replicate when:

We want to create a “container” of OS + applications + packages

We could do this with AWS, if we were careful

It relies on randomisation, and the RNG changes (e.g. R 3.5 -> 3.6)

Some package functions get updated (without telling you)

Cross-OS inconsistencies (in packages, e.g. BART)

·

·

·

Hold fixed all versions etc.

Hold fixed underlying computation regardless of hardware

Load this setup whenever we want

·

·

·

But remember, AMIs get updated·

21/32

Docker

A platform for running code/application in “a loosely isolated environment”

Sign up for a Docker account here

Lightweight(ish)

Self-contained

Consistent

·

·

·

Then download Docker Desktop here·

22/32

https://hub.docker.com/signup
https://docs.docker.com/get-docker/

Images + Containers

Docker also uses images

A container is the runnable instances of your image:

The ``stack” of OS + apps you want

Lots of pre-written docker images

·

·

Can be run locally or on the cloud

Can be run on any OS

(Almost) isolated from the rest of your system

·

·

·

23/32

Basic Docker workflow

1. Pull a Docker image

2. Run the image as a container:

Go to Docker Hub or Docker Desktop to search available images

At the command line, use docker pull:

·

·

E.g. docker pull rocker/r-ver loads a pre-built R image-

docker run -ti rocker/r-ver·

-ti: makes your container interactive (i) with a shell terminal (t)

Many more arguments to change runtime

-

-

24/32

https://hub.docker.com/
https://docs.docker.com/engine/reference/commandline/run/

Closing/stoppping/removing a container

Close the container by pressing Ctrl + a + d

Stop the container running:

Remove the container from your system:

Alternatively, we can use --rm flag to close the container on exit by default:

Exits the contianer, but it is still running·

Verify which container is running: docker ps -a

Copy the name of the server

Run docker stop <container_name>

·

·

·

Run docker rm <container_name>·

E.g. docker run -ti --rm rocker/r-ver·

25/32

Mounting volumes

Our container is isolated from the rest of our system:

But sometimes useful to read/write to a specific part of our own system

What happens in the container, stays in the container·

We do so by mounting a storage volume when we run the container·

E.g. `docker run -ti –rm -v “$(pwd)”:/home rocker/r-ver-

Format is <path/on/host>:<path/in/container>

"$(pwd)" is our local working directory

-

-

26/32

Writing & building custom images

Sometimes, we want to configure our own image:

We write a Dockerfile that Docker uses to configure a new image

E.g. add specific package requirements

Add custom setup steps

·

Maybe even specific versions of packages-

·

Key commands include:·

FROM: adapt an existing image

RUN: call specific scripts or commands

ENV: set environment variables

WORKDIR: change your default working directory

-

-

-

-

27/32

Building Dockerfiles

Once we are happy with our configuration, we build the image with:

docker build -t my472 .

The first build can take some time

-t allows you to give your image a ‘tag’ (in this case my472)

. tells Docker that your Dockerfile is in the current directory

·

·

Docker caches steps to speed-up rebuilding

If you want to add new packages, can be better to add new steps

Then consolidate when finished

·

·

·

28/32

Running RStudio docker container

Our example Dockerfile sets up an RStudio server app:

We add specific arguments to interact with the container via our browser:

docker run -ti --rm -v "$(pwd)":/home/rstudio -p 8787:8787
my472

·

·

-p 8787:8787: links a host port to a port inside the container

-ti, --rm, and -v as before

-

-

29/32

Using Docker in the cloud

The same isolated environment can be run on any system (with Docker)

If you have built a custom image and want to access it on the cloud:

Use AWS EC2 instance as host

Pull and run a Docker container on server instance

·

·

Ensures exact environment at any point if using the same image-

Use docker push to send your image to Docker Hub

More info here

·

·

30/32

https://docs.docker.com/engine/reference/commandline/push/

The end

Quick reminders:

This term:

Use free tier instances for testing/learning whenever possible

Stop/terminate them after use

Keep an eye on costs via e.g. Services -> Cost Explorer and Services ->
Billing

·

·

·

Data munging -> online data scraping/storage/access -> cloud computing

We’ve practiced fundamental DS skills: each and every one can be extended

Keep practicing with them!

·

·

·

31/32

Have a lovely holiday!

 * * () * *
* * /\ *
 * /i\\ * *
 * o/\\ * *
 * ///\i\ *
 * /i//*\ *
 /o/*\\i\ * *
 * /*////\\\\i*
 * /i///*/\\\\\o\ *
 * * || *

