
Week 10: Relational
Databases and SQL
LSE MY472: Data for Data Scientists
https://lse-my472.github.io/

Autumn Term 2024

Ryan Hübert

Slides last updated: 4 December 2024

https://lse-my472.github.io/

Outline

➜ Relational vs non-relational databases

➜ Structured Query Language (SQL)

➜ Coding session

Relational vs non-relational databases

Databases

Database system: an organized collection of data that is stored
and accessed via a computer

➜ The way a database is organized is a schema

➜ Since a database is used for data storage, a user typically
“reads” and “writes” to a database

➜ Access data via queries

➜ Queries are often constructed/written in domain-specific
languages like SQL, but not always

➜ A user can typically read and write via R (or python)

Relational vs non-relational databases

Relational databases

➜ data is stored in multiple tables to avoid redundancy

➜ tables are linked based on common keys

➜ SQL is dominant DSL used to access data

Non-relational databases

➜ data stored in a way that is not based on tabular relations
(e.g. MongoDB uses JSON like documents)

➜ Data is accessed using a wide variety of (sometimes
customised) languages

Relational vs non-relational databases

From: Codewave Insights

https://insights.codewave.com/when-to-use-mongodb-and-why/

Relational databases
Relational Database Management Systems (RDBMS):

➜ Underlying software system used to maintain relational
databases

➜ E.g.: MySQL, PostgreSQL, SQLite, MariaDB, etc.

Online Transaction Processing (OLTP) Services:

➜ High frequency (many transactions per minute), fast response,
many write operations

➜ E.g.: Amazon RDS, Google Cloud SQL, Azure SQL Database

Online Analytical Processing (OLAP) Services:

➜ Large volume (petabytes of data), lower frequency (few
transactions), slower response, mostly read operations

➜ E.g.: Amazon RedShift, Google BigQuery, Microsoft Azure
SQL Server, Snowflake

Some vocabulary

Relational database term SQL term

Relation Table
Tuple, record Row
Attribute, field Column

(Excerpt from: https://en.wikipedia.org/wiki/Relational_database)

Keys

➜ Keys are critical, allowing the rows of different tables to be
connected

➜ Primary key: A column or set of columns (composite key)
which uniquely identifies each row/record in the table

➜ Foreign key: A primary key of another table

https://en.wikipedia.org/wiki/Relational_database

Relational databases in action

Entity relationship diagrams (ERDs)

A database’s schema can be represented with an ERD

Source: Lucidchart

https://www.lucidchart.com/pages/er-diagrams/

Structured Query Language

SQL: Structured Query Language

➜ A “domain specific language” (DSL) designed to define, control
access to, manipulate, and query relational databases

➜ Initially written SEQUEL (Structured English Query Language),
but later changed to SQL because of trademark issues

➜ Pronounced both S-Q-L and SEQUEL today

➜ It is a nonprocedural/declarative language: User defines
what to do, inputs, and outputs, but not the control flow

➜ How the statement is executed is left to the optimizer, which is
opaque to the user

➜ How long SQL queries depends on optimization

➜ Performance will vary, but generally faster than standard data
frame manipulation in R (and much more scalable)

Some common components of SQL queries

➜ The result of a SQL query is a table

➜ SELECT columns

➜ FROM a table in a database

➜ WHERE rows meet a condition

➜ GROUP BY values of a column

➜ ORDER BY values of a column when displaying results

➜ LIMIT to only X number of rows in resulting table

➜ Always required: SELECT and FROM; rest are optional

➜ SELECT can be combined with operators such as SUM,
COUNT, AVG. . .

Some more components of SQL queries
➜ To merge multiple tables, use JOIN

➜ Variety of ____ JOIN types: INNER, RIGHT, LEFT FULL
OUTER

➜ For anti-joins, use RIGHT or LEFT and a WHERE clause

➜ When handling multiple tables, use aliases (e.g. FROM table
AS t)

➜ More complex ways of combining tables include
(non-exhaustive):

➜ CROSS JOIN: Produce all combinations of the two ids

➜ UNION: De-duped vertical combination of both tables (add
ALL for dupes)

➜ SQL also supports common table expressions (CTEs):
➜ Lets you build multiple sub-tables within a single query

➜ Connect these together with a subsequent SELECT statement

SQL and tidyverse

SQL is just way to do data manipulations on tabular data

You already know how to work with and manipulate tabular data
using tidyverse, which is conceptually identical

Many SQL queries “resemble” tidyverse functions, e.g.:

➜ In SQL, you SELECT columns; in tidyverse you select()
columns

➜ In SQL, you use WHERE to subset rows using a condition; in
tidyverse you filter() rows according to a condition

➜ In SQL, you LEFT JOIN two tables; in tidyverse you
left_join() two tibbles

➜ Etc.

SQL query examples

Table 1 named client

id name gender billed account_id
[1,] "1" "Alice" "F" "500" "101"
[2,] "2" "Bob" "M" "750" "102"
[3,] "3" "Charlie" "F" "200" "103"

Table 2 named account

id balance
[1,] "101" "5000"
[2,] "102" "3000"
[3,] "103" "7000"

SQL query examples

This returns a table with the name and account_id columns of
client:

SELECT name, account_id FROM client;

The tidyverse equivalent:
client %>%

select(name, account_id)

Returns:

name account_id
[1,] "Alice" "101"
[2,] "Bob" "102"
[3,] "Charlie" "103"

SQL query examples

This returns a table with all columns of client but only rows
where the gender variable is “F”:

SELECT * FROM client WHERE gender = 'F';

The tidyverse equivalent:
client %>%

filter(gender == "F")

Returns:

id name gender billed account_id
[1,] "1" "Alice" "F" "500" "101"
[2,] "3" "Charlie" "F" "200" "103"

SQL query examples

This returns a table with two columns, total_billed and avg_billed and one
row giving the total billed and average billed amounts for female clients in
client table:

SELECT SUM(billed) AS total_billed,
AVG(billed) AS avg_billed

FROM client
WHERE gender = 'F';

The tidyverse equivalent:
client %>%

filter(gender == "F") %>%
summarise(total_billed = sum(billed),

avg_billed = mean(billed))

Returns:

total_billed avg_billed
[1,] 700 350

SQL JOINs

From: https://upload.wikimedia.org/wikipedia/commons/9/9d/SQL_Joins.svg

https://upload.wikimedia.org/wikipedia/commons/9/9d/SQL_Joins.svg

SQL JOIN examples

This returns a table with two columns name and balance created by inner
joining tables client and account by their shared keys, account_id and id:

SELECT client.name, account.balance
FROM client JOIN account
ON client.account_id = account.id;

The tidyverse equivalent:
client %>%

inner_join(account,
by = c("account_id" = "id")) %>%

select(name, balance)

Returns:

name balance
[1,] "Alice" "5000"
[2,] "Bob" "3000"
[3,] "Charlie" "7000"

Coding session

Coding session

Download from moodle:

➜ public Facebook data (individual csv files)

Code:

➜ 01-sql-intro.Rmd

➜ 02-sql-join-and-aggregation.Rmd

General information on how to connect to SQL databases with R:
https://solutions.rstudio.com/db/

https://solutions.rstudio.com/db/

	Relational vs non-relational databases
	Structured Query Language
	Coding session

