
Week 5: HTML, CSS, and
Scraping Static Websites
LSE MY472: Data for Data Scientists
https://lse-my472.github.io/

Autumn Term 2024

Ryan Hübert

Slides last updated: 29 October 2024

https://lse-my472.github.io/

Plan for today

➜ Introduction

➜ Some key features of the internet

➜ HTML and CSS

➜ Fundamentals of web scraping

➜ Coding

Introduction

Examples

An increasing amount of data is available on the web

➜ Speeches, biographical information . . .

➜ Social media data, articles, press releases . . .

➜ Geographic information, conflict data . . .

These datasets are often provided in an unstructured format

Web scraping is the process of extracting this information
automatically and transforming it into a structured dataset

Why automate?
Copy & pasting is time-consuming, boring, prone to errors, and
impractical or infeasible

In contrast, automated web scraping

1. Scales well for large datasets

2. Allows for dynamic data collection

3. Is (mostly) reproducible

4. Involves adaptable techniques

5. Facilitates detecting and fixing errors

When to scrape?

1. Trade-off between your time today and your time in the future.
Invest in your future self!

2. Computer time is often cheap; human time more expensive

Obtaining data from the web: Two approaches

1. Screen scraping: Extract data from source code of website,
with an html parser and/or regular expressions

➜ rvest (this week) and RSelenium packages (week 7) in R

2. Web APIs (week 8): A set of structured http requests that
return JSON or XML data

➜ httr package to construct API requests

➜ Packages specific to each API: For example WDI, Rfacebook

➜ Check CRAN Task View on Web Technologies and Services for
examples

https://cran.r-project.org/web/packages/WDI/index.html
https://cran.r-project.org/web/packages/Rfacebook/index.html
https://cran.r-project.org/web/views/WebTechnologies.html

Some key features of the internet

Client-server model

Client-server model

➜ Client: User computer, tablet, phone, software application, etc.

➜ Server: Web server, mail server, file server, Jupyter server, etc.

1. Client makes request to the server
➜ Depending on what you want to get, the request might be

➜ HTTP: Hypertext Transfer Protocol

➜ HTTPS: Hypertext Transfer Protocol Secure

➜ SMTP: Simple Mail Transfer Protocol

➜ FTP: File Transfer Protocol

2. Server returns response

Request and response in the case of HTTP

From StackOverflow

https://stackoverflow.com/questions/4109689/how-does-a-client-browser-generate-a-request-to-be-sent-to-a-server

Source code: HTML and CSS

Source code

➜ A webserver returns a combination of text and multimedia files
(images, videos, etc.) that are used to display a website

➜ Each “webpage” is typically a plain text file coded in a
combination of languages: HTML, CSS and JavaScript

➜ These plain text files contain instructions about how the
webpage should look

➜ The purpose of a web browser (Chrome, Safari, Firefox, etc.) is
to take these plain text files and render them according to the
instructions so that a user sees something “nice”

➜ Different browsers have different bells and whistles, but they all
basically do the same thing

➜ We often refer to the underlying plain text files as the source
code for the webpage

Browser “developer tools”

In Chrome:

➜ Look at plain text version of page in source code:
View > Developer > View Source

➜ Look at suite of developer tools:
View > Developer > Developer Tools

In Safari:

➜ Enable developer settings: Safari > Settings >
Advanced > Show features for web developers

➜ Look at plain text version of page in source code:
Develop > Show Page Source

➜ Look at suite of developer tools:
Develop > Show Web Inspector

Simple example: https://lse-my472.github.io/

https://lse-my472.github.io/

Simple example: Viewing source code

Simple example: Using developer tools

HTML
HTML: Hypertext Markup Language

➜ HTML displays mostly static content

➜ Contents of many dynamic webpages cannot be found in
HTML, e.g. Google Maps

➜ Understanding what is static and dynamic in a webpage is a
crucial first step for web scraping

https://www.google.com/maps/

HTML tree structure

A very simple HTML file

https://lse-my472.github.io/week05/data/html1.html
<!DOCTYPE html>
<html>

<head>
<title>A title</title>

</head>
<body>

<h1>A first heading</h1>
<p>A first paragraph.</p>

</body>
</html>

Inspiration: https://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro

https://lse-my472.github.io/week05/data/html1.html
https://www.w3schools.com/html/tryit.asp?filename=tryhtml_intro

Slightly more features

https://lse-my472.github.io/week05/data/html2.html
<!DOCTYPE html>
<html>

<head>
<title>A title</title>

</head>
<body>

<h1>A first heading</h1>
<p>A first paragraph.</p>
<p>A second paragraph with some

formatted text.</p>
<p>A third paragraph with a

hyperlink.</p>
</body>

</html>

https://lse-my472.github.io/week05/data/html2.html

With some content divisions
https://lse-my472.github.io/week05/data/html3.html
<!DOCTYPE html>
<html>

<head>
<title>A title</title>

</head>
<body>

<div>
<h1>Heading of the first division</h1>
<p>A first paragraph.</p>
<p>A second paragraph with some

formatted text.</p>
<p>A third paragraph with a

hyperlink.</p>
</div>
<div>

<h1>Heading of the second division</h1>
<p>Another paragraph with some text.</p>

</div>
</body>

</html>

https://lse-my472.github.io/week05/data/html3.html

Beyond plain HTML

1. Cascading Style Sheets (CSS): “Style sheet” language which
describes formatting of HTML components, useful for us
because of selectors

2. Javascript: Adds functionalities to the websites, e.g. change
content/structure after website has been loaded

➜ This usually makes webpages interactive

Adding some simple CSS to the last example (1/2)

https://lse-my472.github.io/week05/data/css1.html
<!DOCTYPE html>
<html>

<head>
<!-- CSS start -->
<style>
p {
color: green;
}
</style>
<!-- CSS end -->

<title>A title</title>
</head>
<body>
...

https://lse-my472.github.io/week05/data/css1.html

Adding some simple CSS to the last example (2/2)
https://lse-my472.github.io/week05/data/css2.html
<!DOCTYPE html>
<html>

<head>

<!-- CSS start -->
<style>
.text-about-web-scraping {

color: orange;
}
.division-two h1 {
color: green;

}
</style>
<!-- CSS end -->

<title>A title</title>
</head>
<body>
...

https://lse-my472.github.io/week05/data/css2.html

Fundamentals of web scraping

Scenario 1: Data in table format

Scenario 2: Data in “unstructured” format

Scenario 3: “Hidden” behind web forms

Scenario 3: “Hidden” behind web forms

Three main scenarios

1. Data in table format
➜ Automatic extraction with rvest or select specific table with

inspect element in browser

2. Data in unstructured format
➜ Element identification key in this case

➜ Inspect element in browser

➜ Identify the target e.g. with CSS (this week) or XPath selector
(week 7)

➜ Automatic extraction with rvest

3. Data hidden behind web forms (week 7)
➜ Element identification to find text boxes, buttons, results, etc.

➜ Automation of web browser with RSelenium

Identifying elements via CSS selector (1/2)

➜ Selecting by tag-name
➜ Example html code: <h3>This is the main item</h3>

➜ Selector: h3

➜ Selecting by class
➜ Example html code: <div class = 'itemdisplay'>This

is the main item</div>

➜ Selector: .itemdisplay

➜ Selecting by id
➜ Example html code: <div id = 'maintitle'>my main

title</div>

➜ Selector: #maintitle

Identifying elements via CSS selector (2/2)

➜ Selecting by tag structure
➜ Example html code (hyperlink tag a inside div tag): <div>Google
Link</div>

➜ Selector: div a

➜ Selecting by nth child of a parent element
➜ Example html code: <body><p>First

paragraph</p><p>Second paragraph.</p></body>

➜ Selector of second paragraph: body > p:nth-child(2)

You don’t have to figure these out yourself: inspect!

Reference and further examples:
https://www.w3schools.com/cssref/css_selectors.asp

https://www.w3schools.com/cssref/css_selectors.asp

The rules of the game
1. Respect the hosting site’s wishes

➜ Check if an API exists or if data are available for download

➜ Respect copyright and ethics; what are you allowed to do?

➜ Keep in mind where data comes from and give credit

➜ Some websites disallow scrapers via robots.txt file

2. Limit your bandwidth use
➜ Wait some time after each hit

➜ Scrape only what you need, and just once

3. When using APIs, read documentation
➜ Is there a batch download option?

➜ Are there any rate limits?

➜ Can you share the data?

Coding

Markdown files this week

➜ 01-selecting-elements.Rmd

➜ 02-scraping-tables.Rmd

	Introduction
	Some key features of the internet
	Source code: HTML and CSS
	Fundamentals of web scraping
	Coding

