
Week 4: Textual Data
LSE MY472: Data for Data Scientists
https://lse-my472.github.io/

Autumn Term 2024

Ryan Hübert

Slides last updated: 22 October 2024

https://lse-my472.github.io/


Introduction

➜ This week we will focus on processing textual data

➜ Most file formats we work with in this course (.csv, .xml, .json,
etc.) use text to store data

➜ The quantitative analysis of textual data is highly relevant in
social science research and beyond

➜ We will discuss some basic analyses, but for a full course see
MY459 in Winter Term

https://lse-my459.github.io/


Plan for today

➜ Character encoding

➜ Text search: Globs and regular expressions

➜ Elementary text analysis

➜ Coding



Character encoding



Useful background: the basic units of data storage

➜ Bits
➜ Smallest unit of storage on a computer: a 0 or 1

➜ With n bits, can store 2n patterns

➜ E.g., 2 bits of storage gives four possibilities: 00, 01, 10, 11

➜ Bytes
➜ 8 bits = 1 byte

➜ Hence, 1 byte can store 256 patterns

➜ kilobytes, megabytes, gigabytes, etc. are metric aggregations of
bytes (roughly. . . see
https://en.wikipedia.org/wiki/Byte#Multiple-byte_units)

https://en.wikipedia.org/wiki/Byte#Multiple-byte_units


Character encoding

➜ Character: “smallest component of written language that has
semantic value’ ’

➜ See https://unicode.org/glossary/#character

➜ Character set: list of characters with associated numerical
representations

➜ Code points: the unique “numbers” associated with
characters in a character set

➜ These can be expressed in multiple formats (hex, dec, etc.)

➜ The mapping between character and code points is called an
encoding

➜ Encodings use differing number of bits to represent characters:
7-bit, 8-bit, 16-bit, etc.

https://unicode.org/glossary/#character


The origins of encoding: ASCII

➜ ASCII: the original character set/encoding, uses just 7 bits
➜ Could only encode up to 27 = 128 characters. . . not enough!

➜ ASCII was later extended to 8 bits (28), e.g. ISO-8859-1
➜ Now could encode 28 = 256 characters. . . still not enough!

➜ Full tables here: original ASCII, ISO-8859-1

➜ As you can imagine: different languages, different characters →
different character sets and encodings

➜ This is a mess. . . see
http://en.wikipedia.org/wiki/Character_encoding

https://en.wikipedia.org/wiki/ASCII
http://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html
https://en.wikipedia.org/wiki/ASCII
http://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html
http://en.wikipedia.org/wiki/Character_encoding


ASCII and “extended ASCII” examples

Character Code Point (dec) ASCII (7-bit) ISO-8859-1 (8-bit)
+ 43 0101011 00101011
6 54 0110110 00110110
A 65 1000001 01000001
h 104 1101000 01101000
ñ 164 10100100
¼ 172 10101100
α 224 11100000



Potential encoding issues

1. Wrongly detected encoding

➜ Encoding type/character set is not stored as metadata in plain
text files (e.g., .csv, .tab, .txt, .md, .Rmd, etc.)

➜ Software used to access plain text files guesses which encoding
is used, sometimes incorrectly

➜ Assuming the wrong encoding when reading in/parsing a text
file leads to import errors and corrupted characters

➜ This is known as Mojibake: underlying bit sequences are
translated into the wrong characters

➜ We’ll see some examples.

https://en.wikipedia.org/wiki/Mojibake


Potential encoding issues

2. Space constraints

➜ Each bit used to represent a character uses storage

➜ 8 bit encoding uses less storage, but is not enough for a
character set that has all known characters

➜ Encoding with 32 bits (232 ≈ 4.3 billion code points), however,
ensures all known characters can be stored

➜ But, in most situations, it implies storing a lot of “unused” bits
and unnecessarily large file sizes



Widely used character encoding today: Unicode

➜ Created by the Unicode Consortium

➜ Common Unicode encoding formats: UTF-8 and UTF-16
(Unicode transformation format)

➜ UTF-8 is a variable-width character encoding and by far the
most frequent character encoding on the web today

➜ Variable amounts of bits are used for each character with the
first byte/8 bits corresponding to ASCII

➜ Common characters therefore need less space, but system
capable of storing vast amounts of character code points

https://en.wikipedia.org/wiki/Unicode_Consortium


UTF-8 examples

UTF-8 is a variable width encoding standard: 8, 16, 24, 32 bits

See: https://dencode.com/en/string/bin,
https://www.rapidtables.com/convert/number/ascii-to-binary.html

https://dencode.com/en/string/bin
https://www.rapidtables.com/convert/number/ascii-to-binary.html


UTF-16 examples

UTF-16 is a variable width encoding standard: 16 or 32 bits

See: https://dencode.com/en/string/bin,
https://www.rapidtables.com/convert/number/ascii-to-binary.html

https://dencode.com/en/string/bin
https://www.rapidtables.com/convert/number/ascii-to-binary.html


UTF-32 examples

UTF-32 is a fixed width encoding standard: 32 bits

See: https://dencode.com/en/string/bin,
https://www.rapidtables.com/convert/number/ascii-to-binary.html

https://dencode.com/en/string/bin
https://www.rapidtables.com/convert/number/ascii-to-binary.html


Things to watch out for

➜ Many text production softwares (e.g. MS Office-based
products) might still use proprietary character encoding
formats, such as Windows-1252

➜ Windows tends to use UTF-16, while Unix-based platforms use
UTF-8

➜ Text editors can be misleading: the client may display mojibake
but the encoding might still be as intended

➜ Generally, no easy method of detecting encodings in basic text
files



Some things to try with encoding issues

To determine the estimated character encoding of a file (note that
this estimate might be incorrect)

➜ Linux, Unix, Mac: For example, file -I filename.txt,
file -I filename.json, etc. in terminal

➜ Windows: For example, open with Notepad and check field in
the lower right hand corner of the window

To change a file’s encoding (see e.g. this Stack Overflow post)

➜ Linux, Unix, Mac: For example, iconv -f ISO-8859-15 -t
UTF-8 in.txt > out.txt in terminal

➜ Windows: For example, open the text with Notepad, click
“Save As”, and choose a name and UTF-8 encoding.
Alternatively, use PowerShell

https://stackoverflow.com/questions/64860/best-way-to-convert-text-files-between-character-sets


Some things to try with encoding issues (in R)

In R, e.g. via readr (for more discussion, see R4DS)

➜ For a character vector x, obtain texts assuming a different
encoding with parse_character(x, locale =
locale(encoding = "Latin1"))

➜ Make guess about encoding with
guess_encoding(charToRaw(x))

(In my experience: python has more robust tools for dealing with
encoding issues)

https://r4ds.had.co.nz/data-import.html#readr-strings


Resources

Character encoding is complicated, but VERY important

Highly recommend:
https://kunststube.net/encoding/

And also Wikipedia pages on:

➜ character encoding
➜ ASCII
➜ Unicode
➜ UTF-8

https://kunststube.net/encoding/
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8


Globs and regular expressions



Globs

➜ Searching and counting specific words in texts is key for
quantitative analysis of textual data

➜ Globs offer a simple and intuitive approach to search through
text with wildcard characters

➜ Glob patterns originally used to search file and folder names



Globs: examples of syntax

Wildcard Description Examples
Examples of

matches
* Any number

(also zero) of
characters

tax*, *tax* taxation,
overtaxed

? Single
character

??flation inflation or
deflation

[ab], [AB], [17], etc. List of
characters

module-
[17].Rmd

module-
1.Rmd or

module-
7.Rmd

[a-z], [A-Z], [0-9] Range of
characters

module-[A-
Z].Rmd

module-
A.Rmd or

module-
B.Rmd or

module-
C.Rmd . . .

https://en.wikipedia.org/wiki/Glob/_(programming)

https://en.wikipedia.org/wiki/Glob/_(programming)


Regular expressions

➜ Powerful and much more flexible tool to search (and replace)
text

➜ Different syntax than globs

➜ Many editors that work with plain text (e.g. Rstudio, VS Code)
can usually find and replace terms with regular expressions

➜ Can also be used in many programming languages, e.g. when
counting or collecting certain keywords in text analysis

➜ In R, we can e.g. use stringr or quanteda to search for
keywords with regular expressions

➜ Topic could fill lectures itself, we will cover some basics here



Regular expressions: syntax

➜ Regular expressions can consist of literal characters and
metacharacters

➜ Literal characters: Usual text

➜ Metacharacters: ˆ $ [] () {} * + . ? etc.

➜ When a meta character shall be treated as usual text in a
search, escape it with (unless it is in a set []) \

➜ For example, searching . in regex notation will select any
character, but searching \. will select the actual full stop
character



Syntax: specifying characters (1/2)

➜ .: Matches any character (also white spaces)

➜ \d: Matches any digit 0-9

➜ \w: Matches any character a-z, A-Z, 0-9, _

➜ \s: Matches white spaces

➜ Capitalised versions negate: \S matches everything that is not
a white space etc.



Syntax: specifying characters (2/2)

➜ ˆ: Matches characters at the beginning of the line or string,
➜ E.g. ˆM will select all capital m at the beginning of strings or

lines

➜ $: Matches characters at the end of the line or string,
➜ E.g. m$ will select all lowercase m at the end of strings or lines

➜ []: Character set, e.g. [a-zA-Z] selects single characters from
the Latin alphabet in lower and upper case letters, [ai] selects
characters that are “a” or “i”, [0-9] digits from 0 to 9

➜ [\ˆ ]: In brackets, ˆ has a different meaning namely “not”,
e.g. [ˆa-z] selects all characters that are not from the lower
case alphabet



Syntax: selecting sequences of characters

In order to select whole words, we need to add quantifiers to
individual characters:

➜ *: Zero or more times, e.g. in[a-z]* will select in and also
inflation in a search;

➜ We could use .* to represent all characters and white spaces

➜ +: One or more times, e.g. in[a-z]+ will not select in but
inflation

➜ ?: Denotes optional characters, e.g. re?ally will select really
and rally

➜ {}: Specifies lengths of sequences, e.g. \d{3} selects sequences
of 3 digits, \w{3,4} selects sequences between 3 and 4 general
characters, and \d{3,} selects sequences of at least 3 digits



Syntax: boolean or and capturing groups

➜ |: Boolean or

➜ (): Capturing groups, e.g. (ue?|ü) selects u, ue, and ü.
➜ This means that when searching text, the regular expression

M(ue?|ü)nster will find Münster, Muenster, and Munster.

➜ The captured groups can also be referenced with integer counts,
which can be very helpful when replacing text

➜ https://en.wikipedia.org/wiki/Regular_expression

https://en.wikipedia.org/wiki/Regular_expression


Regular expressions in R and beyond

➜ stringr is a great package for strings that uses regular
expressions:

➜ str_view() show results of searches with regular expressions

➜ str_extract() allows you to extract keywords from strings
through regular expressions

➜ str_replace() finds and replaces regular expressions

➜ Detailed discussion of strings and regular expressions with
stringr in R here

➜ R markdown with many examples here

➜ Regular expressions are used for flexible word searches in the
quanteda package

http://r4ds.had.co.nz/strings.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html


More resources

➜ Some good general discussions of the topic also on Youtube,
e.g. here

➜ In depth treatment of regular expression (programming
language independent): Mastering Regular Expressions by
Jeffrey E. F. Fried

➜ There are several great websites to test regular expressions,
which allow you to provide sample text, write a regex and show
you matches

➜ regxr.com

➜ regex101.com

https://youtu.be/sa-TUpSx1JA
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://regexr.com/
https://regex101.com/


Elementary text analysis



Moving from texts to numbers

➜ To analyse text quantitatively, the key question is how to move
from text to numbers

➜ We will look at very common approaches that count words in
documents

➜ This abstracts from the sequential dependency of words
(beyond n-grams) and is sometimes referred to as a
bag-of-words approach



Common workflow



Common workflow: Tokenisation + dictionary method



Some key concepts

➜ Document-feature matrix (dfm): As many rows as documents,
as many columns was words/features after cleaning

➜ This is also often called a “document-term matrix” or dtm

➜ Stopwords: Common words such as “the”, “to”, etc.

➜ Stemming: Heuristic process to obtain the stem of words which
in essence groups terms, see the following link for a detailed
discussion

➜ n-grams: Sequences of words, e.g. bigrams (2) or trigrams (3).
For example allows to record “not good” as a feature

https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html


Dictionary approaches

➜ Map each word or phrase to a “dictionary” of words,
e.g. associated with a known “sentiment” or psychological
state or with certain topics

➜ Treats matches within each dictionary as equivalent

➜ Examples: Linguistic Inquiry and Word Count, or the General
Inquirer



Dictionary example (from LIWC 2015)

Dictionary object with 1 key entry.
- [posemo]:
- like, like*, :), (:, accept, accepta*, accepted, ...
interests, invigor*, joke*, joking, jolly, joy*, ...
kind, kindly, kindn*, kiss*, laidback, laugh*, ...
likeab*, liked, likes, liking, livel*, lmao*, ...



Problems with dictionary approaches

➜ Polysemy – multiple meanings: The word “kind” has three!

➜ From State of the Union corpus: 318 matches
➜ kind/NOUN – 95%

➜ kind (of)/ADVERB – 1%

➜ kind/ADJECTIVE – 4%

➜ These are known as false positives

➜ Other problem: False negatives (what we miss)
➜ Missed: kindliness

➜ Also missed: altruistic and magnanimous

➜ How to treat conflicting keywords in the same string? “Had a
great day . . . not.”



Further topics

➜ Text classification: How do we use a document-feature matrix
to predict document labels (e.g. spam/not spam)?

➜ Topic models: How do we find sets of words which tend to
appear together?

➜ Word and document embeddings: How can we represent words
or documents as vectors and analyse their
distances/similarities?

➜ How do we take into account the sequential nature of text?

➜ Etc.



Coding



Markdown files

➜ 01-regular-expressions-in-r.Rmd

➜ 02-text-analysis.Rmd

➜ 03-parsing-pdfs.Rmd


	Character encoding
	Globs and regular expressions
	Elementary text analysis
	Coding

