Week 4: Textual Data

LSE MY472: Data for Data Scientists
https:/ /Ise-my472.github.io/

Autumn Term 2024

Ryan Hiibert

Slides last updated: 22 October 2024


https://lse-my472.github.io/

Introduction

=?» This week we will focus on processing textual data

=» Most file formats we work with in this course (.csv, .xml, .json,
etc.) use text to store data

=» The quantitative analysis of textual data is highly relevant in
social science research and beyond

=» We will discuss some basic analyses, but for a full course see
MY459 in Winter Term


https://lse-my459.github.io/

Plan for today

=» Character encoding
=» Text search: Globs and regular expressions
=» Elementary text analysis

=» Coding



Character encoding



Useful background: the basic units of data storage

=» Bits
=» Smallest unit of storage on a computer: a 0 or 1
=» With n bits, can store 2" patterns

=» E.g., 2 bits of storage gives four possibilities: 00, 01, 10, 11

=» Bytes
=» 8 bits = 1 byte
=» Hence, 1 byte can store 256 patterns

=» kilobytes, megabytes, gigabytes, etc. are metric aggregations of

bytes (roughly. .. see
https://en.wikipedia.org/wiki/Byte#Multiple-byte_ units)


https://en.wikipedia.org/wiki/Byte#Multiple-byte_units

Character encoding

=» Character: “smallest component of written language that has
semantic value'’

=» See https://unicode.org/glossary /#character

=» Character set: list of characters with associated numerical
representations

=» Code points: the unique “numbers” associated with
characters in a character set

=» These can be expressed in multiple formats (hex, dec, etc.)

=» The mapping between character and code points is called an
encoding

=?» Encodings use differing number of bits to represent characters:
7-bit, 8-bit, 16-bit, etc.


https://unicode.org/glossary/#character

The origins of encoding: ASCII

=» ASCII: the original character set/encoding, uses just 7 bits
=» Could only encode up to 27 = 128 characters... not enough!
=» ASCII was later extended to 8 bits (28), e.g. ISO-8859-1
=» Now could encode 28 = 256 characters. .. still not enough!
=¥ Full tables here: original ASCII, 1SO-8859-1

=» As you can imagine: different languages, different characters —
different character sets and encodings

=» This is a mess... see
http://en.wikipedia.org/wiki/Character_encoding


https://en.wikipedia.org/wiki/ASCII
http://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html
https://en.wikipedia.org/wiki/ASCII
http://www.ic.unicamp.br/~stolfi/EXPORT/www/ISO-8859-1-Encoding.html
http://en.wikipedia.org/wiki/Character_encoding

ASCII and “extended ASCII" examples

Character Code Point (dec) ASCII (7-bit) 1S0O-8859-1 (8-bit)

+ 43 0101011 00101011
6 54 0110110 00110110
A 65 1000001 01000001
h 104 1101000 01101000
fi 164 10100100
Y 172 10101100

o} 224 11100000




Potential encoding issues

1. Wrongly detected encoding

-5

->

Encoding type/character set is not stored as metadata in plain
text files (e.g., .csv, .tab, .txt, .md, .Rmd, etc.)

Software used to access plain text files guesses which encoding
is used, sometimes incorrectly

Assuming the wrong encoding when reading in/parsing a text
file leads to import errors and corrupted characters

This is known as Mojibake: underlying bit sequences are
translated into the wrong characters

=» We'll see some examples.


https://en.wikipedia.org/wiki/Mojibake

Potential encoding issues

2. Space constraints
=» Each bit used to represent a character uses storage

=?» 8 bit encoding uses less storage, but is not enough for a
character set that has all known characters

=» Encoding with 32 bits (232 ~ 4.3 billion code points), however,
ensures all known characters can be stored

=» But, in most situations, it implies storing a lot of “unused” bits
and unnecessarily large file sizes



Widely used character encoding today: Unicode

=» Created by the Unicode Consortium

=» Common Unicode encoding formats: UTF-8 and UTF-16
(Unicode transformation format)

=» UTF-8 is a variable-width character encoding and by far the
most frequent character encoding on the web today

=» Variable amounts of bits are used for each character with the
first byte/8 bits corresponding to ASCII

=» Common characters therefore need less space, but system
capable of storing vast amounts of character code points


https://en.wikipedia.org/wiki/Unicode_Consortium

UTF-8 examples

UTF-8 is a variable width encoding standard: 8, 16, 24, 32 bits

Code Byte 1 Byte 2 Byte 3 Byte 4
& | U+0026 | 00100110
u | U+0075 | 01110101
U | U+00FC | 11000011 | 10111100
[l | U+0414 | 11010000 | 10010100
A. | U+120A | 11100001 | 10001000 | 10001010
&' | U+1FAEO | 11110000 | 10011111 | 10101011 | 10100000

See: https://dencode.com/en/string/bin,
https://www.rapidtables.com /convert/number/ascii-to-binary.html



https://dencode.com/en/string/bin
https://www.rapidtables.com/convert/number/ascii-to-binary.html

UTF-16 examples

UTF-16 is a variable width encoding standard: 16 or 32 bits

Code Byte 1 Byte 2 Byte 3 Byte 4
& | U+0026 | 00000000 | 00100110
u | U+0075 | 00000000 | 01110101
U | U+00FC | 00000000 | 11111100
[l | U+0414 | 00000100 | 00010100
A. | U+120A | 00010010 | 00001010
&' | U+1FAEO | 11011000 | 00111110 | 11011110 | 11100000

See: https://dencode.com/en/string/bin,
https://www.rapidtables.com/convert/number/ascii-to-binary.html



https://dencode.com/en/string/bin
https://www.rapidtables.com/convert/number/ascii-to-binary.html

UTF-32 examples

UTF-32 is a fixed width encoding standard: 32 bits

Code Byte 1 Byte 2 Byte 3 Byte 4
& | U+0026 | 00000000 | 00000000 | 00000000 | 00100110
u U+0075 | 00000000 | 00000000 | 00000000 | 01110101
u U+00FC | 00000000 | 00000000 | 00000000 | 11111100
[ | U+0414 00000000 | 00000000 | 00000100 | 00010100
A. | U+120A | 00000000 | 00000000 | 00010010 | 00001010
&' | U+1FAEO | 00000000 | 00000001 | 11111010 | 11100000

See: https://dencode.com/en/string/bin,
https://www.rapidtables.com /convert/number/ascii-to-binary.html



https://dencode.com/en/string/bin
https://www.rapidtables.com/convert/number/ascii-to-binary.html

Things to watch out for

->

->

Many text production softwares (e.g. MS Office-based
products) might still use proprietary character encoding
formats, such as Windows-1252

Windows tends to use UTF-16, while Unix-based platforms use
UTF-8

Text editors can be misleading: the client may display mojibake
but the encoding might still be as intended

Generally, no easy method of detecting encodings in basic text
files



Some things to try with encoding issues

To determine the estimated character encoding of a file (note that
this estimate might be incorrect)

=» Linux, Unix, Mac: For example, file -I filename.txt,
file -I filename. json, etc. in terminal

=» Windows: For example, open with Notepad and check field in
the lower right hand corner of the window

To change a file's encoding (see e.g. this Stack Overflow post)

=» Linux, Unix, Mac: For example, iconv -f IS0-8859-15 -t
UTF-8 in.txt > out.txt in terminal

=» Windows: For example, open the text with Notepad, click
“Save As”, and choose a name and UTF-8 encoding.
Alternatively, use PowerShell


https://stackoverflow.com/questions/64860/best-way-to-convert-text-files-between-character-sets

Some things to try with encoding issues (in R)

In R, e.g. via readr (for more discussion, see R4DS)

=» For a character vector x, obtain texts assuming a different

encoding with parse_character(x, locale =
locale(encoding = "Latini"))

=» Make guess about encoding with
guess_encoding(charToRaw(x))

(In my experience: python has more robust tools for dealing with
encoding issues)


https://r4ds.had.co.nz/data-import.html#readr-strings

Resources

Character encoding is complicated, but VERY important

Highly recommend:
https://kunststube.net/encoding/

And also Wikipedia pages on:

=» character encoding
=» ASCII

=» Unicode

=*> UTF-8


https://kunststube.net/encoding/
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Globs and regular expressions



Globs

=¥» Searching and counting specific words in texts is key for
quantitative analysis of textual data

=» Globs offer a simple and intuitive approach to search through
text with wildcard characters

=» Glob patterns originally used to search file and folder names



Globs: examples of syntax

Examples of
Wildcard Description Examples matches
* Any number tax*, *tax* taxation,
(also zero) of overtaxed

characters
7 Single 77flation inflation or
character deflation
[ab], [AB], [17], etc. List of module- module-
characters [17].Rmd 1.Rmd or
module-
7.Rmd
[a-z], [A-Z], [0-9] Range of module-[A- module-
characters Z].Rmd A.Rmd or
module-
B.Rmd or
module-

CRmd ...



https://en.wikipedia.org/wiki/Glob/_(programming)

Regular expressions

=» Powerful and much more flexible tool to search (and replace)
text

=» Different syntax than globs

=» Many editors that work with plain text (e.g. Rstudio, VS Code)
can usually find and replace terms with regular expressions

=» Can also be used in many programming languages, e.g. when
counting or collecting certain keywords in text analysis

=?» In R, we can e.g. use stringr or quanteda to search for
keywords with regular expressions

=» Topic could fill lectures itself, we will cover some basics here



Regular expressions: syntax

=» Regular expressions can consist of literal characters and
metacharacters

=» Literal characters: Usual text
=» Metacharacters: “ $[] () {} *+ . 7 etc.

=» When a meta character shall be treated as usual text in a
search, escape it with (unless it is in a set []) \

=» For example, searching . in regex notation will select any
character, but searching \. will select the actual full stop
character



Syntax: specifying characters (1/2)

=» .: Matches any character (also white spaces)
=» \d: Matches any digit 0-9

=» \w: Matches any character a-z, A-Z, 0-9, _
=» \s: Matches white spaces

=» Capitalised versions negate: \S matches everything that is not
a white space etc.



Syntax: specifying characters (2/2)

=» ~: Matches characters at the beginning of the line or string,

=» E.g. "M will select all capital m at the beginning of strings or
lines

=» $: Matches characters at the end of the line or string,

=» E.g. m$ will select all lowercase m at the end of strings or lines

=» [1: Character set, e.g. [a-zA-Z] selects single characters from
the Latin alphabet in lower and upper case letters, [ai] selects
characters that are “a” or "i", [0-9] digits from 0 to 9

=» [\~ J: In brackets, ~ has a different meaning namely “not”,
e.g. [Ta-z] selects all characters that are not from the lower
case alphabet



Syntax: selecting sequences of characters

In order to select whole words, we need to add quantifiers to
individual characters:

=» *: Zero or more times, e.g. in[a-z]* will select in and also
inflation in a search;

=» We could use .* to represent all characters and white spaces

=» +: One or more times, e.g. in[a-z]+ will not select in but
inflation

=» 7. Denotes optional characters, e.g. re?ally will select really
and rally

=» {}: Specifies lengths of sequences, e.g. \d{3} selects sequences
of 3 digits, \w{3,4} selects sequences between 3 and 4 general
characters, and \d{3,7} selects sequences of at least 3 digits



Syntax: boolean or and capturing groups

=?» |: Boolean or
=» (): Capturing groups, e.g. (ue?|i) selects u, ue, and (.

=» This means that when searching text, the regular expression
M(ue?|i)nster will find Minster, Muenster, and Munster.

=» The captured groups can also be referenced with integer counts,
which can be very helpful when replacing text

=» https://en.wikipedia.org/wiki/Regular_expression


https://en.wikipedia.org/wiki/Regular_expression

Regular expressions in R and beyond

=» stringr is a great package for strings that uses regular
expressions:

=» str_view() show results of searches with regular expressions

=» str_extract() allows you to extract keywords from strings
through regular expressions

=» str_replace() finds and replaces regular expressions

=» Detailed discussion of strings and regular expressions with
stringr in R here

=» R markdown with many examples here

=» Regular expressions are used for flexible word searches in the
quanteda package


http://r4ds.had.co.nz/strings.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html

More resources

=» Some good general discussions of the topic also on Youtube,
e.g. here

=» In depth treatment of regular expression (programming
language independent): Mastering Regular Expressions by
Jeffrey E. F. Fried

=» There are several great websites to test regular expressions,
which allow you to provide sample text, write a regex and show
you matches

=> regxr.com

=» regex101l.com


https://youtu.be/sa-TUpSx1JA
https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://regexr.com/
https://regex101.com/

Elementary text analysis



Moving from texts to numbers

=» To analyse text quantitatively, the key question is how to move
from text to numbers

=» We will look at very common approaches that count words in
documents

=?» This abstracts from the sequential dependency of words
(beyond n-grams) and is sometimes referred to as a
bag-of-words approach



Common workflow

An economic miracle is
taking place in the
United States, and the
only thing that can stop
it are foolish wars,
politics, or ridiculous
partisan investigations.

The United States of

Processed text as a document-feature matrix

America right now has
the strongest, most
durable economy in
the world. We're in the|
middle of the longest
streak of private secto
job creation in history.

We reinvented
Government,
transforming it into a
catalyst for new ideas
that stress both
opportunity and
responsibility and give
our people the tools
they need to solve
their own problems.

To build a prosper
future, we must tru:

features
documents economy united wall crime climate
Clinton-2000 10 4 1 5 1
Bush-2008 6 4 ] [] 1
Obama-2016 16 4 1 0 4
Trump-2019 5 19 6 2 ]

people with their own
money and empower
them to grow our
economy.

Source texts

Quantitative analysis and inference

Describing texts quantitatively or stylistically
Identifying keywords
Measuring ideology or sentiment in documents
Mapping semantic networks
Identifying topics and estimating their prevalence
Measuring document or term similarities
Classifying documents




Common workflow: Tokenisation + dictionary method

Ending
inflation
means Ending end
freeing inflation inflat
al means mean
( ) freeing free features
from doc: end inflat free terror live
the [ american ] reagan1981 1 101
(reagan1981) terror_J terror nixon1973 @ 1 e e o
terror runaway | [ runaway
Ending inflation | of — m tabulating features into a
means freeing all living _| ive ‘matrix
Americans from runaway costs cost
the terror of living —
runaway living cols
costs.
e rem?va: _of lower-
izati unctuation ., . .
source texts  tokenization pan d “stop casing and selecting only sentiment
) words” stemming words to create a document-
(nixon1973) leads sentiment matrix
This leads only only
to inflated o
ions, to [ ~& iiaed leads lead
reduced ( inflated inflat
individual effort, ( )
andtoa N ( ] [Lexpect
i o [[reduced reduc
Teduced | [individual individu reatures
individual| | effort effort docs positive negative
. m " 11981 1 1
offort disappointment | ( disappoint s H h
and
to




Some key concepts

=» Document-feature matrix (dfm): As many rows as documents,
as many columns was words/features after cleaning

=» This is also often called a “document-term matrix” or dtm
=» Stopwords: Common words such as “the”, “to”, etc.

=» Stemming: Heuristic process to obtain the stem of words which
in essence groups terms, see the following link for a detailed
discussion

=» n-grams: Sequences of words, e.g. bigrams (2) or trigrams (3).
For example allows to record “not good" as a feature


https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html

Dictionary approaches

=» Map each word or phrase to a "dictionary” of words,
e.g. associated with a known “sentiment” or psychological
state or with certain topics

=» Treats matches within each dictionary as equivalent

=» Examples: Linguistic Inquiry and Word Count, or the General
Inquirer



Dictionary example (from LIWC 2015)

Dictionary object with 1 key entry.

- [posemo] :

- like, likex, :), (:, accept, accepta*, accepted,
interests, invigor*, joke*, joking, jolly, joyx*,
kind, kindly, kindn*, kiss*, laidback, laughx*,
likeab*, liked, likes, liking, livel*, lmaox*,



Problems with dictionary approaches

=» Polysemy — multiple meanings: The word “kind" has three!
=» From State of the Union corpus: 318 matches
- kind/NOUN — 95%
- kind (of)/ADVERB - 1%
=» kind/ADJECTIVE - 4%
=» These are known as false positives
=» Other problem: False negatives (what we miss)
=» Missed: kindliness
=» Also missed: altruistic and magnanimous

=» How to treat conflicting keywords in the same string? “Had a
great day ... not.”



Further topics

=» Text classification: How do we use a document-feature matrix
to predict document labels (e.g. spam/not spam)?

=» Topic models: How do we find sets of words which tend to
appear together?

=» Word and document embeddings: How can we represent words
or documents as vectors and analyse their
distances/similarities?

=» How do we take into account the sequential nature of text?

=» Etc.



Coding



Markdown files

=» 01-regular-expressions-in-r.Rmd
=» 02-text-analysis.Rmd
=?» 03-parsing-pdfs.Rmd



	Character encoding
	Globs and regular expressions
	Elementary text analysis
	Coding

