
Week 1: Introduction
LSE MY472: Data for Data Scientists
https://lse-my472.github.io/

Autumn Term 2024

Ryan Hübert

Slides last updated: 2 October 2024

https://lse-my472.github.io/


What is this course about?



80/20 rule of data science:
80% data manipulation, 20% data analysis

MY472 is about the 80%



Course outline

1. Introduction
2. Tabular data
3. Data visualisation
4. Textual data
5. HTML, CSS, and scraping static pages
6. Reading week
7. XML, RSS, and scraping non-static pages
8. Working with APIs
9. Other data types

10. Creating and managing databases
11. Interacting with online databases



Plan for today

➜ Administration and logistics

➜ A little about me

➜ R and RStudio

➜ Git/Github for version control



Administration and logistics



Prerequisites and software

➜ Introductory course – no prerequisites (only completion of R
preparatory course required!)

➜ You should bringing your own laptop to lectures and to
seminars

➜ Required software:
➜ R – Install from https://www.r-project.org/

➜ RStudio – Install from
https://www.rstudio.com/products/rstudio/download/

➜ Git – Install the GitHub Desktop application from
https://desktop.github.com/

➜ Please install before your seminar session tomorrow

➜ Mirrors similar tool usage and learning in other Methodology
courses

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://desktop.github.com/


Course philosophy

Who is this course for?

➜ Two audiences: researchers and “industry”

➜ Practically speaking, the course was designed by researchers. . .
this is a feature, not a bug!

➜ You have a wide range of skillsets, that’s great!



Course philosophy

How to learn the techniques in this course?

➜ Lecture approach: not ideal for learning how to code

➜ You can only learn by doing

➜ We will cover concepts three times
1. Introduction to the topic in lecture

2. Guided coding session in lecture and seminar

3. Course assignments

➜ We will move relatively fast

➜ There are lots of ways to implement the techniques we’ll
cover—use the opportunity to develop your preferred workflow



Materials and resources

Course website: https://lse-my472.github.io/

➜ Mixed set of readings, very specific to each week
➜ Often freely available online, otherwise, available for purchase

(often in electronic versions)

➜ Some books are (freely) available online and in print, and the
online version may be more recent

Teaching team

➜ Ryan Hübert, Associate Professor (Methodology), course
convenor/lecturer and your primary point of contact

➜ Daniel de Kadt, Assistant Professor (Methodology)

➜ Charlotte Kuberka, PhD Student (Government)

Office hour slots are booked at https://studenthub.lse.ac.uk/.

https://lse-my472.github.io/
https://studenthub.lse.ac.uk/


Course meetings

➜ Weekly lectures: Wednesdays 13:00–15:00 (CLM.2.02)

➜ Ten one-hour seminars (“labs”) starting this week
➜ Group 1: Thursdays 13:00–14:00 (CLM.2.05)

➜ Group 2: Thursdays 17:00–18:00 (CBG.2.05)

➜ Group 3: Thursdays 14:00–15:00 (CLM.2.05)

➜ No lecture/seminar in Week 6

➜ Office hours (book via StudentHub)



Assessment

➜ Formative exercises completed in seminars (solutions provided)

➜ Formative practice problem set
➜ Opportunity to practise format and style of response for the

summative assessments

➜ Due Friday, 1st November at 5pm

➜ Summative mid-term problem set (50% of final mark)
➜ Due Friday, 22nd November at 5pm

➜ Summative final take-home assessment (50% of final mark)
➜ A data science project with a peer review

➜ Due Wednesday, 15th January at 5pm

Submission logistics will be announced in due course



A note on collaboration

➜ All assignments are individual unless we instruct you otherwise

➜ You may discuss with others, but your submission (including
code) should be your own

➜ You can use online resources but always give credit in
comments if you borrow code/solutions

➜ Any uncited code/solutions/papers/resources, or shared code,
are considered plagiarism



ChatGPT (and other generative assistants)

You are allowed to use ChatGPT for your assignments

➜ Ignoring the presence/possibilities of ChatGPT is unwise

➜ An opportunity to integrate these tools into your workflow

But beware:

➜ We will assess your ability to “deploy” these tools

➜ ChatGPT routinely produces bad code, incorrect information

➜ You need proficiency to recognise good code and fix broken
code (useful analogy: learning to speak a non-native language)

➜ You are sharing your thoughts, ideas, and work with models
that are proprietary (yikes!)

➜ You will need to do more than simple coding exercises;
you’re learning to be a data scientist



About me



Who am I?

➜ Associate Professor at the London School of Economics
➜ PhD in Political Science and MA in Economics (UC Berkeley)

MPA in advanced policy analysis (Columbia SIPA)

➜ Asst. Professor of Political Science at UC Davis (2016-2024)

➜ Research uses game theory and computational/quantitative
methods to study U.S. political institutions, especially U.S.
federal courts (more: https://ryanhubert.github.io/)

➜ Email me at r.hubert@lse.ac.uk

➜ Schedule office hours at https://studenthub.lse.ac.uk/

➜ Open door policy: happy to chat when my door is open

➜ I prefer that you call me “Ryan”

https://ryanhubert.github.io/
mailto:r.hubert@lse.ac.uk
https://studenthub.lse.ac.uk/


R and RStudio



Why use R?

➜ It’s free and open-source

➜ Quite accessible even to novice coders

➜ Frequently used in academia and the private sector

➜ Flexible and extensible through many packages

➜ Excellent online documentation and troubleshooting resources

➜ A fully-fledged programming language, making it easier to
transition to/from other languages



What about python?

➜ Python is a “similar” coding language popular in industry and
gaining some traction in academia – also free and open-source

➜ It has some advantages and disadvantages relative to R

➜ If you want to do data science, you’ll probably (eventually)
become bilingual

➜ I may occasionally show you similarities/differences (optional)

➜ TLDR: if you learn one, that’s good enough and you can learn
the other quickly



RStudio



Installing R and RStudio

➜ Please install R and RStudio on your laptop and bring it to
lectures and seminars

➜ Software:
➜ R – Install from https://www.r-project.org/

➜ RStudio – Install from
https://posit.co/download/rstudio-desktop/

➜ Try to install both before seminar this week. If there are any
issues with installation, we can discuss them in seminar

https://www.r-project.org/
https://posit.co/download/rstudio-desktop/


Git/GitHub



Version control

➜ A version control system (VCS) is key when working on code,
particularly when collaborating

➜ It keeps records of changes in files - who made which changes
when

➜ Possibility of reverting changes and going back to previous
states

➜ When a VCS keeps the entire code and history on each
collaborator’s machine, it is called distributed



The main idea(s)



Git/GitHub

➜ Git: A very popular distributed version control system

➜ Created by Linus Torvalds in 2005 to facilitate Linux kernel
development

➜ Other options e.g. Mercurial, Subversion

➜ GitHub: Service to host collections of code online with many
extra functionalities (UI, documentation, issues, user
profiles. . . )



Terminology

➜ Repository/repo: A collection of code and other files

➜ Clone: Download a repo to a computer

➜ Commit: Create a snapshot of (code) files and describe how
they have changed

➜ Push: Update changes made locally on a computer also in the
remote repository

➜ Pull: Obtain changes made by others which are stored in the
remote repository



Installing Git

➜ Mac:
➜ Type git into your Terminal and hit enter

➜ In most cases, this will automatically install git if it’s not
already installed

➜ If it doesn’t work, go to https://git-scm.com/download/mac
(use Homebrew)

➜ Windows:
➜ Downlod from https://git-scm.com/download/win

➜ Register a GitHub account at https://github.com/
➜ You can apply for student benefits via

https://education.github.com/benefits?type=student

➜ If you install the GitHub Desktop app, then it should install
git automatically

https://git-scm.com/download/mac
https://git-scm.com/download/win
https://github.com/
https://education.github.com/benefits?type=student


Creating a repository

➜ First, log on to https://github.com/ with your account

➜ Click on your alias in the upper right hand corner − > Your
repositories − > New

➜ Select a name, e.g. ‘firstrepo’

➜ Select private to make it visible only to you and accounts you
can select

➜ For the .gitignore choose the R pre-set

➜ Add an empty README

➜ Click on ‘Create repository’

➜ The repo now exists on GitHub

https://github.com/


Configuring Git user and email

➜ Next, you will once need to configure Git on your computer
and link it to GitHub

➜ Open Mac Terminal or Windows Git Bash

➜ Set your username in Git by pasting in Terminal/Git Bash: git
config --global user.name "Your Name" (replace with
your name before hitting enter)

➜ Set your commit email in Git: git config --global
user.email your@email.com

➜ Then navigate to the folder where you would like to locate the
repository on your computer with cd (change directory)



Cloning a respository

➜ The next step is to copy (clone) the online repository to your
computer

➜ On your repository page on GitHub, click on Code and copy
the URL (https)

➜ In the command line, enter git clone ... and replace . . .
with the copied url

➜ You will now be asked to enter your user name and password,
for this we will have to create an access token as the last step
in this setup (note: some users are instead asked at this
point to enter their password via a pop-up window - in
this case, no access token has to be created manually and
you can skip the next slide)



GitHub authentication

➜ On GitHub, click on the alias in the upper right hand corner
− > Settings − > Developer settings − > Personal access
tokens − > Generate new token

➜ Pick a name, e.g. “command line”, choose an expiration, select
“repo” (this will allow to access private and public repos from
the command line), and click Generate token

➜ Copy the token (it will only be visible once)

➜ Now go back to the command line, enter your GitHub user
name and as password paste the token

➜ That’s it, the setup of Git & GitHub is done and the repository
was copied as well (no need to repeat the authentication until
the token expires)



Creating a file

➜ We will now create a new file in the repository and log these
changes

➜ With RStudio or a text editor (e.g. download VS Code at
https://code.visualstudio.com/), add a file somecode.R into
the repo folder

➜ At the command line, change into the repo folder with cd
firstrepo (change directory)

➜ Now you are ready to commit the changes that were made to
the repo

https://code.visualstudio.com/


Committing changes

➜ First check whether anything changed with git status (make
sure you are in the repo folder on your computer)

➜ Next add all untracked changes to the so-called staging area
with git add . (we can also add only specific files)

➜ WARNING: be very careful using the dot to add files!

➜ Commit/log changes with git commit -m "added a code
sample"

➜ That’s it!

➜ To study this again, add another line of code to the file and
repeat the above steps

➜ Run git log to see the history of commits



Pushing changes to the remote repository

➜ To store these changes also in the remote repository, run git
push afterwards

➜ It is now possible to review the changes in the browser which is
very helpful for large code files

➜ First, go to the repository page on GitHub and click on the
clock symbol next to ‘commits’ in the upper right hand corner

➜ Click on the key describing a specific commit, which could
e.g. look something like ‘472cb9d’, then you will see which lines
of code changed

➜ If someone else has changed the online repository, run git
pull to obtain the newest files



Review of key commands

➜ git clone ...: Download online repository to local computer

➜ git status: See status of files in repository

➜ git add .: Stage all changes made (alternatively add distinct
file names to be staged)

➜ git commit -m "some message ": Commit (i.e. record)
staged changes

➜ git push: Upload local changes to remote repository

➜ git pull: If files changed online, update local repository first



Some further concepts

➜ Fork: Own copy of a repository (pushed changes to this copy
do not affect the original remote repository - different from git
clone)

➜ Branch: A parallel version of the code originating from a
duplication at one point

➜ Merge: Combine branches

➜ Pull request: GitHub based request to merge a branch or a fork
into other code

➜ We will discuss these in the seminar



Extensions for Git/GitHub

➜ People often use a combination of Git via the command line
and the user interface of the GitHub website

➜ There is also a graphical user interface from GitHub to replace
the command line (GitHub Desktop), or Git can be used
directly through RStudio as an R-specific alternative to using
the more general command line

➜ For detailed online manuals and books that discuss Git, see
e.g. https://git-scm.com/book/en/v2

➜ To review GitHub, see e.g. https://docs.github.com/e

https://git-scm.com/book/en/v2
https://docs.github.com/e


Useful command line prompts for Mac/Linux

➜ pwd – “Print working directory”

➜ cd – “Change directory” using relative filepaths
➜ cd .. goes back one folder level

➜ ls – “lists” all folders and files in the current directory

➜ Other helpful commands can be mkdir, rmdir, rm, and touch



Before we get to coding

Homework before seminar:

1. Install R and RStudio

2. Create a GitHub account and register for student benefits
(if you want)

3. Install the GitHub Desktop app

4. Check that git is installed (see previous instructions)

5. Make a firstrepo repository using the instructions above

If you have any issues, we can troubleshoot in seminar.



Coding



Coding

Let’s review some R code:

➜ 01-rmarkdown.Rmd

➜ 02-vector-lists-dfs.Rmd


	What is this course about?
	Administration and logistics
	About me
	R and RStudio
	Git/GitHub
	Coding

